3 Span and Linear Independence
Span
Given a vector space \mathcal{V} over a field \mathbb{F}, the span of a set of vectors v_{1}, \dots, v_{n} \in \mathcal{V} is the set of all possible linear combinations of v_{1}, \dots, v_{m}
\text{span} (v_{1}, \dots, v_{n}) = \left\{ \sum_{i=1}^{n} \alpha_{i} \cdot v_{i}, \forall \alpha_{i} \in \mathbb{F} \right\}.
If \mathcal{V} is \mathbb{F}^{m}, the set vectors v_{1}, \dots, v_{n} can be viewed as the columns of the matrix \mathbf{A} \in \mathbb{F}^{m \times n}. Then
\text{span} (v_{1}, \dots, v_{n}) = R (\mathbf{A}).
Since we have proved R (\mathbf{A}) is a subspace of \mathcal{V}, the span of a set of vectors is a subspace of \mathcal{V}.
Spanning set
For a set of vectors \mathcal{S} = v_{1}, \dots, v_{n}, if the subspace \mathcal{W} is the span of \mathcal{S}
\mathcal{W} = \text{span} (\mathcal{S}),
then the set of vectors \mathcal{S} is the spanning set of the subspace \mathcal{W}.
Properties of the spanning set
Consider a set of vectors \mathcal{A} = \left\{ v_{1}, \dots, v_{n} \right\} and a subspace \mathcal{W}.
If \mathcal{A} is a spanning set of \mathcal{W}, the new set
\mathcal{A} \cup \left\{ u_{1}, \dots, u_{n} \right\}
is still a spanning set of \mathcal{W} for arbitrary vectors u_{1}, \dots, u_{n} \in \mathcal{W}.
\mathcal{A} is a spanning set of \mathcal{W} if and only if
all vectors in \mathcal{W} are linear combinations of v_{1}, \dots, v_{n} and
v_{1}, \dots, v_{n} \in \mathcal{W}.
If vectors in set \mathcal{B} are linear combinations of the vectors in \mathcal{A}, then
\text{span} (\mathcal{B}) \subseteq \text{span} (\mathcal{A}).
If \text{span} (\mathcal{A}) = \mathcal{W} and \text{span} (\mathcal{B}) = \mathcal{U}, then
\text{span} (\mathcal{A} \cup \mathcal{B}) = \mathcal{W} + \mathcal{U},
where
\mathcal{W} + \mathcal{U} = \left\{ w + u \mid w \in \mathcal{W}, u \in \mathcal{U} \right\}.
Linear independence
Given a vector space \mathcal{V} over a field \mathbb{F}, a set of non-zero vectors v_{1}, \dots, v_{n} \in \mathcal{V} is linearly independent when
\sum_{i=1}^{n} \alpha_{i} \cdot v_{i} = 0 \iff \alpha_{i} = 0, i = 1, \dots, n.
Properties of linear independence
Given a matrix \mathbf{A} whose columns are vectors \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \in \mathbb{F}^{m} the set of vectors \mathcal{S} = \{ \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \} is linearly independent when the null space of \mathbf{A} only contains \mathbf{0} \in \mathbb{F}^{n}.
N (\mathbf{A}) = \left\{ \mathbf{0} \right\}
If vectors v_{1}, \dots, v_{n} \in \mathcal{V} are linearly independent and the subspace \mathcal{W} = \text{span} (v_{1}, \dots, v_{n}), the set of field elements \{ \alpha_{1}, \dots, \alpha_{n} \} that is paired with the set of vectors \{ v_{1}, \dots, v_{n} \} to represent any vector u \in \mathcal{W}: u = \sum_{i=1}^{n} \alpha_{i} v_{i} is unique.
Linear dependence
Given a vector space \mathcal{V} over a field \mathbb{F}, a set of non-zero vectors v_{1}, \dots, v_{n} \in \mathcal{V} is linear dependent when there exists an \alpha_{i} \neq 0 such that
\sum_{i=1}^{n} \alpha_{i} \cdot v_{i} = 0.
(existence-of-linear-combination)=
If a set of vectors \{ v_{1}, \dots, v_{n} \} is linearly dependent, there exists an index j (1 \leq j \leq n) such that v_{j} is a linear combination of the rest of the vectors:
v_{j} = \sum_{i=1, i \neq j}^{n} \alpha_{i} \cdot v_{i}.