Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Notations and Facts
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Unitary Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Hermitian Matrices
    • 15  Positive Definite Matrices
  • Calculus
    • 16  Derivatives
    • 17  Chain rule
  • Probability and Statistics
    • 18  Probability
    • 19  Random Variables
    • 20  Expectation
    • 21  Common Distributions
    • 22  Moment Generating Function
    • 23  Concentration Inequalities I
    • 24  Convergence
    • 25  Limit Theorems
    • 26  Maximum Likelihood Estimation
    • 27  Bayesian Estimation
    • 28  Expectation-maximization
    • 29  Concentration Inequalities II
  • Learning Theory
    • 30  Statistical Learning
    • 31  Bayesian Classifier
    • 32  Effective Class Size
    • 33  Empirical Risk Minimization
    • 34  Uniform Convergence
    • 35  PAC Learning
    • 36  Rademacher Complexity
  • Machine Learning
    • 37  Linear Discriminant
    • 38  Perceptron
    • 39  Logistic Regression
    • 40  Multi-layer Perceptron
    • 41  Boosting
    • 42  Support Vector Machine
    • 43  Decision Tree
    • 44  Principle Component Analysis
  • Deep Learning
    • 45  Transformer

Table of contents

  • Notations
    • Mathematical definitions
    • Mathematical operations
    • Mathematical indexing
    • Others
  • Facts
    • Logarithm
    • Linear algebra

Notations and Facts

Notations

Mathematical definitions

Symbol Name Description
x Scalar Variables are scalars (numbers).
\mathbf{x} Vector Bold non-capitalized variables are vectors.
\hat{\mathbf{x}} Unit vector Vectors that have a hat are unit vectors.
\mathbf{X} Matrix Bold capitalized variables are matrices.
X Random variable Capitalized variables are random variables.
\mathcal{X} Set Calligraphic variables are sets.

Mathematical operations

Symbol Name Description
\mathbf{a} \cdot \mathbf{b} Dot product Dot product between vector \mathbf{a} and \mathbf{b} (same as \mathbf{a}^{T} \mathbf{b}).
\mathbf{A}\mathbf{b} Matrix vector product Matrix product between matrix \mathbf{A} and vector \mathbf{b} (column matrix).
\mathbf{a}^{T} Vector transpose The transposed vector is a matrix of size 1 \times d
\mathbf{A}^{T} Matrix transpose Transpose a matrix.

Mathematical indexing

Symbol Name Description
\mathbf{A}_{i, j} Matrix element selection Select the scalar at row i and column j of matrix \mathbf{A}.
\mathbf{A}_{i, *} Matrix row selection Select the vector at row i of matrix \mathbf{A}.
\mathbf{A}_{*, j} Matrix column selection Select the vector at column j of matrix \mathbf{A}.
\mathbf{a}_{i} Vector element selection Select the scalar at index i of vector \mathbf{a}.

Others

Symbol Name Description
\mathbb{1}_{cond} Conditional operator Evaluates to 1 if cond is true, 0 otherwise.

Facts

Logarithm

  1. Product

    \ln(xy) = \ln(x) + \ln(y)

  2. Quotient

    \ln \left( \frac{x}{y} \right) = \ln(x) - \ln(y)

  3. Log of power

    \ln(x^{y}) = y \ln(x)

  4. Log reciprocal

    \ln \left( \frac{1}{x} \right) = \ln(1) - \ln(x) = 0 - \ln(x) = -\ln(x)

Linear algebra

  1. The squared norm of vector \mathbf{x}

    \lVert \mathbf{x} \rVert^{2} = \mathbf{x} \cdot \mathbf{x} = \mathbf{x}^{T} \mathbf{x}

  2. The squared norm of a vector difference between \mathbf{a} and \mathbf{b}

    \lVert \mathbf{a} - \mathbf{b} \rVert^{2} = (\mathbf{a} - \mathbf{b})^{T} (\mathbf{a} - \mathbf{b}) = \mathbf{a}^{T}\mathbf{a} - 2 \mathbf{a}^T\mathbf{b} + \mathbf{b}^{T}\mathbf{b}

  3. The matrix form of the dot product between two vectors \mathbf{a} and \mathbf{b} with a coefficient \lambda

    \lambda(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a}^{T} \mathbf{\Lambda} \mathbf{b}

    where \mathbf{\Lambda} is a diagonal matrix with value \lambda.

  4. The transpose of the product of two matrices \mathbf{A} and \mathbf{B}

    (\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}

Welcome
1  Fields and Spaces