Notations and Facts
Notations
Mathematical definitions
Symbol | Name | Description |
---|---|---|
x | Scalar | Variables are scalars (numbers). |
\mathbf{x} | Vector | Bold non-capitalized variables are vectors. |
\hat{\mathbf{x}} | Unit vector | Vectors that have a hat are unit vectors. |
\mathbf{X} | Matrix | Bold capitalized variables are matrices. |
X | Random variable | Capitalized variables are random variables. |
\mathcal{X} | Set | Calligraphic variables are sets. |
Mathematical operations
Symbol | Name | Description |
---|---|---|
\mathbf{a} \cdot \mathbf{b} | Dot product | Dot product between vector \mathbf{a} and \mathbf{b} (same as \mathbf{a}^{T} \mathbf{b}). |
\mathbf{A}\mathbf{b} | Matrix vector product | Matrix product between matrix \mathbf{A} and vector \mathbf{b} (column matrix). |
\mathbf{a}^{T} | Vector transpose | The transposed vector is a matrix of size 1 \times d |
\mathbf{A}^{T} | Matrix transpose | Transpose a matrix. |
Mathematical indexing
Symbol | Name | Description |
---|---|---|
\mathbf{A}_{i, j} | Matrix element selection | Select the scalar at row i and column j of matrix \mathbf{A}. |
\mathbf{A}_{i, *} | Matrix row selection | Select the vector at row i of matrix \mathbf{A}. |
\mathbf{A}_{*, j} | Matrix column selection | Select the vector at column j of matrix \mathbf{A}. |
\mathbf{a}_{i} | Vector element selection | Select the scalar at index i of vector \mathbf{a}. |
Others
Symbol | Name | Description |
---|---|---|
\mathbb{1}_{cond} | Conditional operator | Evaluates to 1 if cond is true, 0 otherwise. |
Facts
Logarithm
Product
\ln(xy) = \ln(x) + \ln(y)
Quotient
\ln \left( \frac{x}{y} \right) = \ln(x) - \ln(y)
Log of power
\ln(x^{y}) = y \ln(x)
Log reciprocal
\ln \left( \frac{1}{x} \right) = \ln(1) - \ln(x) = 0 - \ln(x) = -\ln(x)
Linear algebra
The squared norm of vector \mathbf{x}
\lVert \mathbf{x} \rVert^{2} = \mathbf{x} \cdot \mathbf{x} = \mathbf{x}^{T} \mathbf{x}
The squared norm of a vector difference between \mathbf{a} and \mathbf{b}
\lVert \mathbf{a} - \mathbf{b} \rVert^{2} = (\mathbf{a} - \mathbf{b})^{T} (\mathbf{a} - \mathbf{b}) = \mathbf{a}^{T}\mathbf{a} - 2 \mathbf{a}^T\mathbf{b} + \mathbf{b}^{T}\mathbf{b}
The matrix form of the dot product between two vectors \mathbf{a} and \mathbf{b} with a coefficient \lambda
\lambda(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a}^{T} \mathbf{\Lambda} \mathbf{b}
where \mathbf{\Lambda} is a diagonal matrix with value \lambda.
The transpose of the product of two matrices \mathbf{A} and \mathbf{B}
(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}