5 Linear Map and Rank
Linear Map
Let \mathcal{U} and \mathcal{V} be the vector spaces over the same filed \mathbb{F}. A map T: \mathcal{U} \to \mathcal{V} is linear if
T (u + v) = T (u) + T (v) \quad u, v \in \mathcal{U}, T (u), T (v) \in \mathcal{V}, and
T (\alpha \cdot v) = \alpha \cdot T (v) \quad \alpha \in \mathbb{F}, v \in \mathcal{u}, T (v) \in \mathcal{V}.
Properties of linear map
Let \mathcal{U} and \mathcal{V} be two vector spaces over the same filed \mathbb{F}, and suppose T is a linear map T: \mathcal{U} \to \mathcal{V}.
A linear map must satisfy T (0) = 0.
There exists a matrix representation of T.
Generalization of null space and range space
Since every linear map has a matrix representation, the null space and range space defined using matrix can be redefined using linear map.
Given a map T: \mathcal{U} \to \mathcal{V}, the null space (kernel) is
N (T) = \left\{ x \in \mathcal{U} \mid T (x) = 0 \right\},
and the range space (column space) is
R (T) = \left\{ y \in \mathcal{V} \mid y \in T (x), \forall x \in \mathcal{U} \right\}.
Rank
Consider matrix \mathbf{A} \in \mathbb{F}^{m \times n}, the rank of matrix \mathbf{A} is
\text{rank} (\mathbf{A}) = \text{dim} (R (\mathbf{A})).
Properties of rank
Given a matrix \mathbf{A} \in \mathbb{F}^{m \times n},
If \text{rank} (\mathbf{A}) = n, the columns of \mathbf{A} are linearly independent.
rank-nullity theorem: \text{rank} (\mathbf{A}) + \text{dim} (N (\mathbf{A})) = n
\text{rank} (\mathbf{A}) \leq \min (m, n). If \text{rank} (\mathbf{A}) = \min (m, n), matrix is called a full (row or column) rank matrix.
\text{rank} (\mathbf{A}) = \text{rank} (\mathbf{A}^{T})
If \mathbf{A} \in \mathbb{R}^{m \times n}, then
\text{rank} (\mathbf{A}) = \text{rank} (\mathbf{A}^{T} \mathbf{A}).
If \mathbf{A} \in \mathbb{R}^{m \times n} and \mathbf{B} \in \mathbb{R}^{m \times m} and \mathbf{C} \in \mathbb{R}^{n \times n} are full rank matrices, then
\text{rank} (\mathbf{A}) = \text{rank} (\mathbf{B} \mathbf{A}) = \text{rank} (\mathbf{A} \mathbf{C}).
Rank and matrix inverse
Suppose \mathbf{A} \in \mathbb{F}^{m \times n}. There exists a left inverse matrix \mathbf{B} \in \mathbb{F}^{n \times m} of \mathbf{A} such that
\mathbf{B} \mathbf{A} = \mathbf{I}_{n \times n},
if and only if \text{rank} (\mathbf{A}) = n.
There exists a right inverse matrix \mathbf{C} \in \mathbb{F}^{n \times m} of \mathbf{A} such that
\mathbf{A} \mathbf{C} = \mathbf{I}_{m \times m}.
if and only if \text{rank} (\mathbf{A}) = m.
If \mathbf{A} \in \mathbb{F}^{n \times n} is a square matrix and has full rank (\text{rank}(\mathbf{A}) = n), then \mathbf{A} has a unique inverse matrix \mathbf{A}^{-1} such that
\mathbf{A} \mathbf{A}^{-1} = \mathbf{A}^{-1} \mathbf{A} = \mathbf{I}_{n \times n}.