6 Inner Product and Norm
Inner Product
A vector space \mathcal{V} over field \mathbb{R} or \mathbb{C} is a inner product space if there exists a function called inner product, denoted
\langle \cdot, \cdot \rangle: \mathcal{V} \times \mathcal{V} \to \mathbb{R}
with the following properties:
Linearity of first argument \langle \alpha x + \alpha y, z \rangle = \alpha \langle x, z \rangle + \alpha \langle y, z \rangle,
Conjugate symmetry \langle x, y \rangle = \overline{\langle y, x \rangle},
Positive semi-definiteness \langle x, x \rangle \geq 0 and \langle x, x \rangle = 0 \iff x = 0.
Properties of inner product
\langle x, \alpha y + \alpha z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\alpha} \langle x, z \rangle
If \langle x, y \rangle = 0 for all x \in \mathcal{V}, then y = 0.
Standard inner product on \mathbb{R}^{n} and \mathbb{R}^{m \times n}
The standard inner product for vectors on \mathbf{R}^{n} or \mathbf{R}^{m \times n} is the sum of the elementwise product between two vectors,
\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\intercal} \mathbf{y} = \sum_{i = 1}^{n} x_{i} y_{i},
\langle \mathbf{X}, \mathbf{Y} \rangle = \mathrm{tr} (\mathbf{X}^{T} \mathbf{Y}) = \sum_{i = 1}^{m} \sum_{j = 1}^{n} x_{i, j} y_{i, j}.
Norm
A norm of a vector in a inner product vector space \mathcal{V} is a function
\lVert \cdot \rVert \to \mathbb{R}^{+}
with the following properties:
\lVert v \rVert = 0 \iff v = 0.
\lVert \alpha v \rVert = \lvert \alpha \rvert \lVert v \rVert, \alpha \in \mathbb{F}, v \in \mathcal{V},
Triangle inequality: \lVert v_{1} + v_{2} \rVert \leq \lVert v_{1} \rVert + \lVert v_{2} \rVert,
A vector space \mathcal{V} equipped with a norm is called a normed vector space.
Norm induced by inner product
Given an inner product vector space \mathcal{V}, a norm \lVert \cdot \rVert_{ip}: \mathcal{V} \to \mathbb{R}^{+} induced by its inner product is
\lVert v \rVert_{ip} = \sqrt{\langle v, v \rangle}, \quad v \in \mathcal{V}.
For the vector space \mathbb{R}^{n}, the norm induced by inner product is l2 norm (introduced below)
\lVert \mathbf{v} \rVert_{ip} = \sqrt{ \sum_{i=1}^{n} v_{i} v_{i} } = \sqrt{ \sum_{i=1}^{n} \lvert v_{i} \rvert^{2} } = \lVert \mathbf{v} \lVert_{2}.
For the vector space \mathbb{R}^{m \times n}, the norm induced by the inner product is Frobenius norm
\lVert \mathbf{V} \rVert_{ip} = \sqrt{\sum_{i = 1}^{m} \sum_{j = 1}^{n} v_{i, j} v_{i, j}}.
Cauchy-Schwarz Inequality: let \mathcal{V} be an inner product space. Then, for any u, v \in \mathcal{V}, we have
\lvert \langle u, v \rangle \rvert \leq \lVert u \rVert_{ip} \lVert v \rVert_{ip}.
Lp-norm for \mathbb{R}^{n}
Given \mathcal{V} = \mathbb{R}^{n}, define \lVert \cdot \rVert_{p}: \mathcal{V} \to \mathbb{R}^{+} as
\lVert \mathbf{v} \rVert_{p} = \left( \sum_{i=1}^{n} \lvert v_{i} \rvert^{p} \right)^{\frac{1}{p}}, \quad \mathbf{v} \in \mathcal{V},
for p \geq 1.
L_{1} norm:
\lVert \mathbf{v} \rVert_{1} = \sum_{i = 1}^{n} \lvert v_{i} \rvert
L_{2} norm:
\lVert \mathbf{v} \rVert_{2} = \left( \sum_{i = 1}^{n} \lvert v_{i} \rvert^{2} \right)^{\frac{1}{2}}
Operator norms for \mathbb{R}^{m \times n}
An operator or induced norm \lVert \cdot \rVert_{a, b}: \mathbb{R}^{m \times n} \to \mathbb{R} is defined as
\lVert \mathbf{A} \rVert_{a, b} = \max_{\lVert \mathbf{x} \rVert_{b} \leq 1} \lVert \mathbf{A} \mathbf{x} \rVert_{a},
where \lVert \cdot \rVert_{a} is a vector norm on \mathbb{R}^{m} and \lVert \cdot \rVert_{b} is a vector norm on \mathbb{R}^{n}.