Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Linear Algebra
  2. 6  Inner Product and Norm
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Unitary Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Hermitian Matrices
    • 15  Positive Definite Matrices
  • Calculus
    • 16  Derivatives
    • 17  Chain rule
  • Probability and Statistics
    • 18  Probability
    • 19  Random Variables
    • 20  Expectation
    • 21  Common Distributions
    • 22  Moment Generating Function
    • 23  Concentration Inequalities I
    • 24  Convergence
    • 25  Limit Theorems
    • 26  Maximum Likelihood Estimation
    • 27  Bayesian Estimation
    • 28  Expectation-maximization
    • 29  Concentration Inequalities II
  • Learning Theory
    • 30  Statistical Learning
    • 31  Bayesian Classifier
    • 32  Effective Class Size
    • 33  Empirical Risk Minimization
    • 34  Uniform Convergence
    • 35  PAC Learning
    • 36  Rademacher Complexity
  • Machine Learning
    • 37  Linear Discriminant
    • 38  Perceptron
    • 39  Logistic Regression
    • 40  Multi-layer Perceptron
    • 41  Boosting
    • 42  Support Vector Machine
    • 43  Decision Tree
    • 44  Principle Component Analysis
  • Deep Learning
    • 45  Transformer

Table of contents

  • Inner Product
    • Properties of inner product
    • Standard inner product on \mathbb{R}^{n} and \mathbb{R}^{m \times n}
  • Norm
    • Norm induced by inner product
    • Lp-norm for \mathbb{R}^{n}
    • Operator norms for \mathbb{R}^{m \times n}
  1. Linear Algebra
  2. 6  Inner Product and Norm

6  Inner Product and Norm

Inner Product

A vector space \mathcal{V} over field \mathbb{R} or \mathbb{C} is a inner product space if there exists a function called inner product, denoted

\langle \cdot, \cdot \rangle: \mathcal{V} \times \mathcal{V} \to \mathbb{R}

with the following properties:

  • Linearity of first argument \langle \alpha x + \alpha y, z \rangle = \alpha \langle x, z \rangle + \alpha \langle y, z \rangle,

  • Conjugate symmetry \langle x, y \rangle = \overline{\langle y, x \rangle},

  • Positive semi-definiteness \langle x, x \rangle \geq 0 and \langle x, x \rangle = 0 \iff x = 0.

Properties of inner product

  • \langle x, \alpha y + \alpha z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\alpha} \langle x, z \rangle

    Proof

    \begin{aligned} \langle x, \alpha y + \alpha z \rangle & = \overline{\langle \alpha y + \alpha z, x \rangle} & [\text{Conjugate sym}] \\ & = \overline{\alpha \langle y, x \rangle + \alpha \langle z, x \rangle} & [\text{Linearity of 1st}] \\ & = \overline{\alpha} \overline{\langle y, x \rangle} + \overline{\alpha} \overline{\langle z, x \rangle} \\ & = \overline{\alpha} \langle x, y \rangle + \overline{\alpha} \langle x, z \rangle \end{aligned}

  • If \langle x, y \rangle = 0 for all x \in \mathcal{V}, then y = 0.

    Proof

    TODO

Standard inner product on \mathbb{R}^{n} and \mathbb{R}^{m \times n}

The standard inner product for vectors on \mathbf{R}^{n} or \mathbf{R}^{m \times n} is the sum of the elementwise product between two vectors,

\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\intercal} \mathbf{y} = \sum_{i = 1}^{n} x_{i} y_{i},

\langle \mathbf{X}, \mathbf{Y} \rangle = \mathrm{tr} (\mathbf{X}^{T} \mathbf{Y}) = \sum_{i = 1}^{m} \sum_{j = 1}^{n} x_{i, j} y_{i, j}.

Norm

A norm of a vector in a inner product vector space \mathcal{V} is a function

\lVert \cdot \rVert \to \mathbb{R}^{+}

with the following properties:

  • \lVert v \rVert = 0 \iff v = 0.

  • \lVert \alpha v \rVert = \lvert \alpha \rvert \lVert v \rVert, \alpha \in \mathbb{F}, v \in \mathcal{V},

  • Triangle inequality: \lVert v_{1} + v_{2} \rVert \leq \lVert v_{1} \rVert + \lVert v_{2} \rVert,

A vector space \mathcal{V} equipped with a norm is called a normed vector space.

Norm induced by inner product

Given an inner product vector space \mathcal{V}, a norm \lVert \cdot \rVert_{ip}: \mathcal{V} \to \mathbb{R}^{+} induced by its inner product is

\lVert v \rVert_{ip} = \sqrt{\langle v, v \rangle}, \quad v \in \mathcal{V}.

  • For the vector space \mathbb{R}^{n}, the norm induced by inner product is l2 norm (introduced below)

    \lVert \mathbf{v} \rVert_{ip} = \sqrt{ \sum_{i=1}^{n} v_{i} v_{i} } = \sqrt{ \sum_{i=1}^{n} \lvert v_{i} \rvert^{2} } = \lVert \mathbf{v} \lVert_{2}.

  • For the vector space \mathbb{R}^{m \times n}, the norm induced by the inner product is Frobenius norm

    \lVert \mathbf{V} \rVert_{ip} = \sqrt{\sum_{i = 1}^{m} \sum_{j = 1}^{n} v_{i, j} v_{i, j}}.

  • Cauchy-Schwarz Inequality: let \mathcal{V} be an inner product space. Then, for any u, v \in \mathcal{V}, we have

    \lvert \langle u, v \rangle \rvert \leq \lVert u \rVert_{ip} \lVert v \rVert_{ip}.

    Proof

    TODO

Lp-norm for \mathbb{R}^{n}

Given \mathcal{V} = \mathbb{R}^{n}, define \lVert \cdot \rVert_{p}: \mathcal{V} \to \mathbb{R}^{+} as

\lVert \mathbf{v} \rVert_{p} = \left( \sum_{i=1}^{n} \lvert v_{i} \rvert^{p} \right)^{\frac{1}{p}}, \quad \mathbf{v} \in \mathcal{V},

for p \geq 1.

  • L_{1} norm:

    \lVert \mathbf{v} \rVert_{1} = \sum_{i = 1}^{n} \lvert v_{i} \rvert

  • L_{2} norm:

    \lVert \mathbf{v} \rVert_{2} = \left( \sum_{i = 1}^{n} \lvert v_{i} \rvert^{2} \right)^{\frac{1}{2}}

Operator norms for \mathbb{R}^{m \times n}

An operator or induced norm \lVert \cdot \rVert_{a, b}: \mathbb{R}^{m \times n} \to \mathbb{R} is defined as

\lVert \mathbf{A} \rVert_{a, b} = \max_{\lVert \mathbf{x} \rVert_{b} \leq 1} \lVert \mathbf{A} \mathbf{x} \rVert_{a},

where \lVert \cdot \rVert_{a} is a vector norm on \mathbb{R}^{m} and \lVert \cdot \rVert_{b} is a vector norm on \mathbb{R}^{n}.

5  Linear Map and Rank
7  Orthogonality and Unitary Matrix