Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Linear Algebra
  2. 7  Orthogonality and Orthogonal Matrix
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Orthogonal Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Positive Definite Matrices
  • Calculus
    • 15  Derivatives
    • 16  Chain rule
  • Probability and Statistics
    • 17  Probability
    • 18  Random Variables
    • 19  Expectation
    • 20  Common Distributions
    • 21  Moment Generating Function
    • 22  Concentration Inequalities I
    • 23  Convergence
    • 24  Limit Theorems
    • 25  Maximum Likelihood Estimation
    • 26  Bayesian Estimation
    • 27  Expectation-maximization
    • 28  Concentration Inequalities II
  • Learning Theory
    • 29  Statistical Learning
    • 30  Bayesian Classifier
    • 31  Effective Class Size
    • 32  Empirical Risk Minimization
    • 33  Uniform Convergence
    • 34  PAC Learning
    • 35  Rademacher Complexity
  • Machine Learning
    • 36  Linear Discriminant
    • 37  Perceptron
    • 38  Logistic Regression
    • 39  Multi-layer Perceptron
    • 40  Boosting
    • 41  Support Vector Machine
    • 42  Decision Tree

Table of contents

  • Orthogonality
    • Properties of orthogonality
  • Representing vectors using orthogonal basis
  • Orthogonal matrix
    • Properties of orthogonal matrix

7  Orthogonality and Orthogonal Matrix

Orthogonality

A set of non-zero vectors v_{1}, \dots, v_{k} are orthogonal if

\langle v_{i}, v_{j} \rangle = 0, \quad \forall i \neq j.

Properties of orthogonality

If v_{1}, \dots, v_{k} are orthogonal vectors,

  • v_{1}, \dots, v_{k} are also linearly independent.

    Proof

    TODO

  • Suppose \mathcal{S} is a subspace with \text{dim} (S) = n and v_{1}, \dots, v_{k} \in \mathcal{S}, then the set \{ v_{1}, \dots, v_{k} \} forms a basis of \mathcal{S}. Then, \{ v_{1}, \dots, v_{k} \} is an orthogonal basis of \mathcal{S}.

    Proof

    TODO

Representing vectors using orthogonal basis

Suppose \mathcal{S} is a subspace and \{ v_{1}, \dots, v_{n} \} is an orthogonal basis of \mathcal{S}, any vector v \in \mathcal{S} can be represented using \{ v_{1}, \dots, v_{n} \}:

v = \sum_{i=1}^{n} \alpha_{i} v_{i},

where

\alpha_{i} = \frac{ \langle v, v_{i} \rangle }{ \lVert v_{i} \rVert_{ip}^{2} }

Proof

TODO

Orthogonal matrix

A set of vectors v_{1}, \dots, v_{k} are orthonormal if all vectors in the set are orthogonal to each other, and each vector has the inner product norm of 1.

A square real (complex) matrix \mathbf{U} is orthogonal (unitary) if and only if \mathbf{U} has orthonormal columns.

Properties of orthogonal matrix

  • The matrix \mathbf{U} is orthogonal if and only if \mathbf{U}^{H} = \mathbf{U}^{-1}.

    Proof

    By definition, \mathbf{U} has orthogonal columns and thus linearly independent columns. By the rank property, \mathbf{U} has a unique inverse matrix \mathbf{U}^{-1} such that

    \mathbf{U}^{-1} \mathbf{U} = \mathbf{I}_{n \times n}.

    Since by definition we know

    \mathbf{U}^{H} \mathbf{U} = \mathbf{I}_{n \times n},

    then it must follow that

    \mathbf{U}^{H} = \mathbf{U}^{-1}.

    The reverse can be proved backward following the procedure above.

  • The matrix \mathbf{U} is orthogonal if and only if \mathbf{U}^{H} \mathbf{U} = \mathbf{U} \mathbf{U}^{H} = \mathbf{I}_{n \times n}.

    Proof

    Following the unitary matrix property, the inverse \mathbf{U}^{-1} can be both left and right inverse

    \mathbf{U}^{-1} \mathbf{U} = \mathbf{U} \mathbf{U}^{-1} = \mathbf{I}.

    Replacing \mathbf{U}^{-1} with \mathbf{U}^{H}, we have the results:

    \mathbf{U}^{H} \mathbf{U} = \mathbf{U} \mathbf{U}^{H} = \mathbf{I}.

  • The matrix \mathbf{U} is orthogonal if and only if \mathbf{U} \mathbf{x} doesn’t change the length of \mathbf{x}:

    \lVert \mathbf{U} \mathbf{x} \rVert = \lVert \mathbf{x} \rVert.

    Proof

    \begin{aligned} \lVert \mathbf{U} \mathbf{x} \rVert & = \sqrt{\lVert \mathbf{U} \mathbf{x} \rVert^{2}} \\ & = \sqrt{\mathbf{x}^{H} \mathbf{U}^{H} \mathbf{U} \mathbf{x}} \\ & = \sqrt{\mathbf{x}^{H} \mathbf{I} \mathbf{x}} & [\mathbf{U}^{H} \mathbf{U} = \mathbf{I}] \\ & = \sqrt{\mathbf{x}^{H} \mathbf{x}} \\ & = \sqrt{\lVert \mathbf{x} \rVert^{2}} \\ & = \lVert \mathbf{x} \rVert \end{aligned}

6  Inner Product and Norm
8  Complementary Subspaces and Projection