Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Linear Algebra
  2. 7  Orthogonality and Unitary Matrix
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Unitary Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Hermitian Matrices
    • 15  Positive Definite Matrices
  • Calculus
    • 16  Derivatives
    • 17  Chain rule
  • Probability and Statistics
    • 18  Probability
    • 19  Random Variables
    • 20  Expectation
    • 21  Common Distributions
    • 22  Moment Generating Function
    • 23  Concentration Inequalities I
    • 24  Convergence
    • 25  Limit Theorems
    • 26  Maximum Likelihood Estimation
    • 27  Bayesian Estimation
    • 28  Expectation-maximization
    • 29  Concentration Inequalities II
  • Learning Theory
    • 30  Statistical Learning
    • 31  Bayesian Classifier
    • 32  Effective Class Size
    • 33  Empirical Risk Minimization
    • 34  Uniform Convergence
    • 35  PAC Learning
    • 36  Rademacher Complexity
  • Machine Learning
    • 37  Linear Discriminant
    • 38  Perceptron
    • 39  Logistic Regression
    • 40  Multi-layer Perceptron
    • 41  Boosting
    • 42  Support Vector Machine
    • 43  Decision Tree
    • 44  Principle Component Analysis
  • Deep Learning
    • 45  Transformer

Table of contents

  • Orthogonality
    • Representing vectors using orthogonal basis
    • Orthonormal vectors
  • Unitary matrix
    • Unitary transformation
  1. Linear Algebra
  2. 7  Orthogonality and Unitary Matrix

7  Orthogonality and Unitary Matrix

Orthogonality

Definition 7.1 A set of non-zero vectors v_{1}, \dots, v_{k} are orthogonal if

\langle v_{i}, v_{j} \rangle = 0, \quad \forall i \neq j.

Theorem 7.1 If v_{1}, \dots, v_{k} are orthogonal vectors, v_{1}, \dots, v_{k} are also linearly independent.

Proof

TODO

Representing vectors using orthogonal basis

Suppose \mathcal{S} is a subspace and \{ v_{1}, \dots, v_{n} \} is an orthogonal basis of \mathcal{S}, any vector v \in \mathcal{S} can be represented using \{ v_{1}, \dots, v_{n} \}

v = \sum_{i=1}^{n} \alpha_{i} v_{i},

where

\alpha_{i} = \frac{ \langle v, v_{i} \rangle }{ \lVert v_{i} \rVert^{2}_{ip} }

Proof

TODO

Orthonormal vectors

Definition 7.2 A set of vectors v_{1}, \dots, v_{k} are orthonormal if all vectors in the set are orthogonal to each other and each vector has the inner product norm of 1.

Unitary matrix

Definition 7.3 A square matrix \mathbf{U} \in \mathbb{C}^{n \times n} is unitary (orthogonal) if and only if \mathbf{U} has orthonormal columns.

Theorem 7.2 The matrix \mathbf{U} is orthogonal if and only if its transpose is its inverse

\mathbf{U}^{H} = \mathbf{U}^{-1}.

Proof

By definition, \mathbf{U} has orthogonal columns and thus linearly independent columns. By the rank property, \mathbf{U} has a unique inverse matrix \mathbf{U}^{-1} such that

\mathbf{U}^{-1} \mathbf{U} = \mathbf{I}_{n \times n}.

Since by definition we know

\mathbf{U}^{H} \mathbf{U} = \mathbf{I}_{n \times n},

then it must follow that

\mathbf{U}^{H} = \mathbf{U}^{-1}.

The reverse can be proved backward following the procedure above.

Corollary 7.1 The matrix \mathbf{U} is orthogonal if and only if the matrix product between its transpose and itself is an identity matrix

\mathbf{U}^{H} \mathbf{U} = \mathbf{U} \mathbf{U}^{H} = \mathbf{I}_{n \times n}.

Proof

Following the Theorem 7.2, the inverse \mathbf{U}^{-1} can be both left and right inverse

\mathbf{U}^{-1} \mathbf{U} = \mathbf{U} \mathbf{U}^{-1} = \mathbf{I}.

Replacing \mathbf{U}^{-1} with \mathbf{U}^{H}, we have the results:

\mathbf{U}^{H} \mathbf{U} = \mathbf{U} \mathbf{U}^{H} = \mathbf{I}.

Theorem 7.3 The matrix \mathbf{U} is unitary if and only if \mathbf{U} \mathbf{x} doesn’t change the length of \mathbf{x}:

\lVert \mathbf{U} \mathbf{x} \rVert = \lVert \mathbf{x} \rVert.

Proof

\begin{aligned} \lVert \mathbf{U} \mathbf{x} \rVert & = \sqrt{\lVert \mathbf{U} \mathbf{x} \rVert^{2}} \\ & = \sqrt{\mathbf{x}^{H} \mathbf{U}^{H} \mathbf{U} \mathbf{x}} \\ & = \sqrt{\mathbf{x}^{H} \mathbf{I} \mathbf{x}} & [\mathbf{U}^{H} \mathbf{U} = \mathbf{I}] \\ & = \sqrt{\mathbf{x}^{H} \mathbf{x}} \\ & = \sqrt{\lVert \mathbf{x} \rVert^{2}} \\ & = \lVert \mathbf{x} \rVert \end{aligned}

Unitary transformation

Theorem 7.4 Unitary transformation preserves inner product

(\mathbf{U} \mathbf{x})^{H} (\mathbf{U} \mathbf{y}) = \mathbf{x}^{H} \mathbf{y}.

Proof

The result can be easily proved using Corollary 7.1

\mathbf{U}^{H} \mathbf{U} = \mathbf{I}.

Simplifying the equation to get

(\mathbf{U} \mathbf{x})^{H} (\mathbf{U} \mathbf{y}) = \mathbf{x}^{H} \mathbf{U}^{H} \mathbf{U} \mathbf{y} = \mathbf{x}^{H} \mathbf{y}.

Theorem 7.5 Unitary transformation preserves orthogonality of a set of vectors. That is, if a set of vectors \{ \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \} are orthogonal to each other, then \{ \mathbf{U} \mathbf{v}_{1}, \dots, \mathbf{U} \mathbf{v}_{n} \} are also orthogonal to each other for any unitary matrix \mathbf{U}.

6  Inner Product and Norm
8  Complementary Subspaces and Projection