8 Complementary Subspaces and Projection
Complementary Subspaces
Subspaces \mathcal{X}, \mathcal{Y} of a vector space \mathcal{V} are complementary if
\mathcal{V} = \mathcal{X} + \mathcal{Y},
and
\mathcal{X} \cap \mathcal{Y} = 0,
in which case \mathcal{V} is the direct sum of \mathcal{X} and \mathcal{Y} and is denoted as
\mathcal{V} = \mathcal{X} \oplus \mathcal{Y}.
Properties of complementary subspaces
\mathcal{X} and \mathcal{Y} are complementary if and only if there exist unique vectors x \in \mathcal{X} and y \in \mathcal{Y} such that
v = x + y,
for each v \in \mathcal{V}.
Suppose \mathcal{X} has a basis \mathcal{B}_{\mathcal{X}} and \mathcal{Y} has a basis \mathcal{B}_{\mathcal{Y}}. Then \mathcal{X} and \mathcal{Y} are complementary if and only if
\mathcal{B}_{\mathcal{X}} \cap \mathcal{B}_{\mathcal{Y}} = \emptyset
and
\mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}}
is a basis for \mathcal{V}.
Projection
Suppose that \mathcal{X} and \mathcal{Y} are complementary subspaces in \mathcal{V}. Thus, there exists unique x \in \mathcal{X} and y \in \mathcal{Y} such that v = x + y for every vector v \in \mathcal{V}
Then the unique linear operator \mathbf{P} \in \mathbb{C}^{n \times n} defined by
\mathbf{P} v = x
is the projection matrix of \mathcal{V} onto \mathcal{X} along \mathcal{Y} and x \in \mathcal{X} is the projection of v \in \mathcal{V} onto \mathcal{X} along \mathcal{Y}.
Properties of projection matrix
\mathbf{I} - \mathbf{P} is the complementary projection matrix of \mathbf{v} onto \mathcal{Y} along \mathcal{X}.
R (\mathbf{P}) = N (\mathbf{I} - \mathbf{P}) = \mathcal{X} and N (\mathbf{P}) = R (\mathbf{I} - \mathbf{P}) = \mathcal{Y}.
For x \in \mathcal{X}, y \in \mathcal{Y},
\mathbf{P} x = x,
and
\mathbf{P} y = 0.
A linear operator \mathbf{P} on \mathcal{V} is a projection matrix if and only if \mathbf{P} is idempotent (\mathbf{P} = \mathbf{P}^{2}).
If \mathcal{V} = \mathbb{R}^{n} or \mathbb{C}^{n}, then \mathbf{P} is given by
\mathbf{P} = \begin{bmatrix} \mathbf{X} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{-1}
where the columns of \mathbf{X} and \mathbf{Y} are respective bases for \mathcal{X} and \mathcal{Y}.
\mathbf{P} is unique for a given \mathcal{X} and \mathcal{Y}.