10 SVD and Pseudoinverse
URV Factorization
For each \mathbf{A} \in \mathbb{R}^{m \times n} of rank r, there are orthogonal matrices \mathbf{U}_{m \times m} and \mathbf{V}_{n \times n} and a nonsingular matrix \mathbf{C}_{r \times r} such that
\mathbf{A} = \mathbf{U} \mathbf{R} \mathbf{V}^{T} = \mathbf{U} \begin{bmatrix} \mathbf{C}_{r \times r} & 0 \\ 0 & 0 \\ \end{bmatrix}_{m \times n} \mathbf{V}^{T}.
The first r columns in \mathbf{U} are an orthonormal basis for R (\mathbf{A}).
The last m - r columns of \mathbf{U} are an orthonormal basis for N (\mathbf{A}^{T}).
The first r columns in \mathbf{V} are an orthonormal basis for R (\mathbf{A}^{T}).
The last m - r columns of \mathbf{V} are an orthonormal basis for N (\mathbf{A}).
Singular Value Decomposition (SVD)
Singular value decomposition is a special case of the URV factorization where the \mathbf{C} matrix is a diagonal matrix with increasing values in the diagonal.
For each \mathbf{A} \in \mathbb{C}^{m \times n} of rank r, there are orthogonal matrices \mathbf{U} \in \mathbb{R}^{m \times m} and \mathbf{V} \in \mathbb{R}^{n \times n}, and a diagonal matrix \mathbf{D} \in \mathbb{C}^{r \times r} = \text{diag} (\sigma_{1}, \dots, \sigma_{r}) such that
\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{D} & 0 \\ 0 & 0 \\ \end{bmatrix} \mathbf{V}^{H}
with
\sigma_{1} \geq \sigma_{2} \geq \dots, \geq \sigma_{r},
where
the columns in \mathbf{U} and \mathbf{V} are singular vectors and
the diagonal values of \mathbf{D} (\sigma_{i}) are singular values.
Pseudoinverse
A generalized inverse for any matrix can be defined using URV factorization or SVD.
Given a URV factorization of matrix \mathbf{A} \in \mathbb{R}^{m \times n}
\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{C} & 0 \\ 0 & 0 \\ \end{bmatrix} \mathbf{V}^{T}
the pseudoinverse of \mathbf{A} is defined as
\mathbf{A}^{\dagger} = \mathbf{V} \begin{bmatrix} \mathbf{C}^{-1} & 0 \\ 0 & 0 \\ \end{bmatrix} \mathbf{U}^{T}.
The pseudoinverse of matrix \mathbf{A} can also be stated as a matrix \mathbf{A}^{\dagger} that satisfies the following:
\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A} = \mathbf{A},
\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger} = \mathbf{A}^{\dagger},
where \mathbf{A} \mathbf{A}^{\dagger} and \mathbf{A}^{\dagger} \mathbf{A} are symmetric matrix:
(\mathbf{A} \mathbf{A}^{\dagger})^{T} = \mathbf{A} \mathbf{A}^{\dagger},
(\mathbf{A}^{\dagger} \mathbf{A})^{T} = \mathbf{A}^{\dagger} \mathbf{A}.
Properties of pseudoinverse
The pseudoinverse \mathbf{A}^{\dagger} of \mathbf{A} is unique.
Given a full rank matrix \mathbf{A} \in \mathbb{R}^{m \times n}.
If m > n, the left inverse of \mathbf{A} is the pseudoinverse of \mathbf{A} and is written as
(\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T}.
If m < n, the right inverse of \mathbf{A} is the pseudoinverse of \mathbf{A} and is written as
\mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1} .
If m = n, the inverse of \mathbf{A} is the pseudoinverse of \mathbf{A}.