13 Similarity and Diagonalization
Similarity
Definition 13.1 Two square matrices \mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n} are similar if there exists a non-singular matrix \mathbf{P} such that
\mathbf{A} = \mathbf{P} \mathbf{B} \mathbf{P}^{-1}.
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{B},
Theorem 13.1 Similar matrices have the same eigenvalues.
Unitarily (orthogonally) similar
Definition 13.2 Two square matrices \mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n} are unitarily (orthogonally) similar if there exists an unitary (orthogonal) matrix \mathbf{U} such that
\mathbf{A} = \mathbf{U} \mathbf{B} \mathbf{U}^{-1},
which, according to the property of orthogonal matrix, can also be written as
\mathbf{A} = \mathbf{U} \mathbf{B} \mathbf{U}^{H},
Diagonalization
Definition 13.3 A square matrix \mathbf{A} \in \mathbb{C}^{n \times n} is diagonalizable if \mathbf{A} is similar to a diagonal matrix:
\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}
where \mathbf{\Lambda} is a diagonal matrix.
Diagonalization and eigensystems
Theorem 13.2 A square matrix \mathbf{A} \in \mathbb{C}^{n \times n} is diagonalizable if and only if \mathbf{A} has n linearly independent eigenvectors
\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1},
where
the columns of \mathbf{P} \in \mathbb{R}^{n \times n} are n linearly independent eigenvectors,
and the diagonal values of \mathbf{\Lambda} are corresponding eigenvalues.
Diagonalization and multiplicities
Theorem 13.3 A square matrix \mathbf{A} \times \mathbb{C}^{n \times n} is diagonalizable if and only if
\mathrm{geo mult}_{\mathbf{A}} (\lambda_{i}) = \mathrm{alg mult}_{\mathbf{A}} (\lambda_{i}),
for each \lambda in the spectrum \sigma (\mathbf{A}).
Corollary 13.1 If no eigenvalue of \mathbf{A} is repeated, then \mathbf{A} is diagonalizable.