13 Similarity and Diagonalization
Similarity
Two square matrices \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n} are similar if there exists a non-singular matrix \mathbf{P} such that
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{B},
\mathbf{A} = \mathbf{P} \mathbf{B} \mathbf{P}^{-1}.
Similar matrices have the same eigenvalues.
Orthogonally (unitarily) similar
Two matrices \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n} are unitarily similar if there exists an unitary matrix \mathbf{U} such that
\mathbf{U}^{-1} \mathbf{A} \mathbf{U} = \mathbf{B},
which, according to the property of orthogonal matrix, can also be written as
\mathbf{U}^{T} \mathbf{A} \mathbf{U} = \mathbf{B}.
Diagonalization
A square matrix \mathbf{A} \in \mathbb{R}^{n \times n} is diagonalizable if \mathbf{A} is similar to a diagonal matrix:
\mathbf{A} = \mathbf{P} \Lambda \mathbf{P}^{-1}
where \Lambda is a diagonal matrix.
Diagonalization and eigensystems
A square matrix \mathbf{A} \in \mathbb{R}^{n \times n} is diagonalizable if and only if \mathbf{A} has n linearly independent eigenvectors. That is,
\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}
or
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{\Lambda},
where
the columns of \mathbf{P} \in \mathbb{R}^{n \times n} are n linearly independent eigenvectors,
the diagonal values of \mathbf{\Lambda} are corresponding eigenvalues.
Diagonalizability and multiplicities
TODO