14 Normal and Positive Definite Matrices
Normal Matrices
The square real (complex) matrix \mathbf{A} is a normal matrix if and only if
\mathbf{A}^{H} \mathbf{A} = \mathbf{A} \mathbf{A}^{H}.
Properties of normal matrices
Orthogonal (unitary) matrices are normal.
Diagonal matrices are normal.
Unitary similarity preserves normality. That is, if \mathbf{A} is a normal matrix and is unitarily similar to \mathbf{B}
\mathbf{U}^{-1} \mathbf{A} \mathbf{U} = \mathbf{B}
or
\mathbf{U}^{H} \mathbf{A} \mathbf{U} = \mathbf{B},
then \mathbf{B} is also a normal matrix.
Unitary diagonalization
A matrix \mathbf{A} \in \mathbb{C}^{n \times n} is normal if and only if \mathbf{A} is unitarily similar to a diagonal matrix
\mathbf{A}^{H} \mathbf{A} = \mathbf{A} \mathbf{A}^{H} \iff \mathbf{U}^{-1} \mathbf{A} \mathbf{U} = \mathbf{\Lambda}.
where \mathbf{U} is a unitary matrix and \mathbf{\Lambda} is a diagonal matrix.
Since the columns of \mathbf{U} are eigenvectors of \mathbf{A} and are orthonormal to each other the columns of \mathbf{U} must be a complete orthonormal set of eigenvectors for \mathbf{A}, and the diagonal entries of \mathbf{\Lambda} are the associated eigenvalues.
Hermitian (symmetric) matrices
A square complex (real) matrix \mathbf{A} is hermitian (symmetric) if and only if
\mathbf{A}^{H} = \mathbf{A},
which implies a hermitian (symmetric) matrix is a normal matrix.
All eigenvalues of Hermitian matrices are real.
Rayleigh quotient
Given a Hermitian matrix \mathbf{M} \in \mathbb{C}^{n \times n}, the Rayleigh quotient is a function R_{\mathbf{M}} (\mathbf{x}): \mathbb{C}^{n} \setminus \{ 0 \} \rightarrow \mathbb{R}
R_{\mathbf{M}} (\mathbf{x}) = \frac{ \mathbf{x}^{H} \mathbf{M} \mathbf{x} }{ \mathbf{x}^{H} \mathbf{x} }
that takes a nonzero vector \mathbf{x} and returns a real number.
Since the Hermitian matrix \mathbf{M} has all real eigenvalues, they can be ordered. Suppose \lambda_{1}, \dots, \lambda_{n} is the eigenvalues in descending orders.
Then, given a Hermitian matrix, its Rayleigh quotient is upper bounded and lower bounded by maximum and minimum eigenvalues of \mathbf{M} respectively,
\lambda_{1} \geq R_{\mathbf{M}} (\mathbf{x}) \geq \lambda_{n}.
That is,
\lambda_{1} = \max_{\mathbf{x} \neq 0} \frac{ \mathbf{x}^{H} \mathbf{M} \mathbf{x} }{ \mathbf{x}^{H} \mathbf{x} },
\lambda_{n} = \min_{\mathbf{x} \neq 0} \frac{ \mathbf{x}^{H} \mathbf{M} \mathbf{x} }{ \mathbf{x}^{H} \mathbf{x} }.
Positive Definite Matrices
Given a Hermitian matrix \mathbf{A} \in \mathbb{C}^{n \times n}, it is positive definite if and only if
\mathbf{x}^{H} \mathbf{A} \mathbf{x} > 0,
for all nonzero vectors \mathbf{x} \in \mathbb{C}^{n}, and it is positive semi-definite if and only if
\mathbf{x}^{H} \mathbf{A} \mathbf{x} \geq 0,
for all vectors \mathbf{x}.
Properties of definite matrices
Positive definite matrix always has full rank.
A matrix \mathbf{A} is positive definite (semi-definite) if and only if its eigenvalues are positive (non-negative).
TODO \mathbf{A} = \mathbf{B}^{H} \mathbf{B}