Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Probability and Statistics
  2. 28  Expectation-maximization
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Unitary Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Hermitian Matrices
    • 15  Positive Definite Matrices
  • Calculus
    • 16  Derivatives
    • 17  Chain rule
  • Probability and Statistics
    • 18  Probability
    • 19  Random Variables
    • 20  Expectation
    • 21  Common Distributions
    • 22  Moment Generating Function
    • 23  Concentration Inequalities I
    • 24  Convergence
    • 25  Limit Theorems
    • 26  Maximum Likelihood Estimation
    • 27  Bayesian Estimation
    • 28  Expectation-maximization
    • 29  Concentration Inequalities II
  • Learning Theory
    • 30  Statistical Learning
    • 31  Bayesian Classifier
    • 32  Effective Class Size
    • 33  Empirical Risk Minimization
    • 34  Uniform Convergence
    • 35  PAC Learning
    • 36  Rademacher Complexity
  • Machine Learning
    • 37  Linear Discriminant
    • 38  Perceptron
    • 39  Logistic Regression
    • 40  Multi-layer Perceptron
    • 41  Boosting
    • 42  Support Vector Machine
    • 43  Decision Tree
    • 44  Principle Component Analysis
  • Deep Learning
    • 45  Transformer

Table of contents

  • The EM algorithm
    • Problem statements
    • EM procedures
  • Derivation of EM
    • Lower bound
    • EM as coordinate ascent on lower bound
    • E-step
    • M-step
  • Example: mixture model
    • Mixture model
    • EM for mixture model
  • Reference
  1. Probability and Statistics
  2. 28  Expectation-maximization

28  Expectation-maximization

Expectation-maximization (EM) is an iterative algorithm that solves maximum likelihood (ML) problems of estimating parameters in case there are missing or latent (unobserved) variables (features or labels). EM iterates between E-step and M-step until the convergence criterion is met. In E-step, the expected value of the complete data log-likelihood with respect to the probability of the missing variables is computed as a function of the unknown parameters. In M-step, we choose the parameters that maximize the expected value derived in the E-step. EM is proved to converge to a local minimum while the global minimum is not guaranteed.

The EM algorithm

Problem statements

In EM problems, we have two types of variables:

  • Observed variables: a set of random variables \mathbf{X} from which we can draw samples.

  • Hidden variables: another set of random variables \mathbf{Z} from which we cannot draw samples.

Although we cannot draw samples from \mathbf{Z}, we assume there exists a \mathbf{z} for each \mathbf{x} observed. Thus we define two types of datasets.

  • Incomplete data: samples drawn from the observed variables

    \mathcal{X} = \{ \mathbf{x}_{1}, \dots, \mathbf{x}_{n} \}.

  • Complete data: the sample pairs of the observed and hidden variables that we never be able to observe

    \mathcal{X}, \mathcal{Z} = \{ (\mathbf{x}_{1}, \mathbf{z}_{1}), \dots, (\mathbf{x}_{n}, \mathbf{z}_{n}) \}.

Given the incomplete data \mathcal{X}, the goal is to find the maximum likelihood estimate of parameters \Psi for the log-likelihood of the incomplete data \mathcal{X}

\Psi^{*} = \arg\max_{\Psi} \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi).

  • If we knew what the model \mathbb{P}_{\mathbf{X}} (\mathbf{x}) is without introducing other variables, the problem is a standard MLE problem and usually can be easily solved.

  • If instead the joint probability \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathbf{x}, \mathbf{z}) is known or can be derived, we can still solve the problem by maximizing the equation that marginalizes out the latent variables from the joint probability

    \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) = \log \int \mathbb{P}_{\mathbf{X}, \mathbf{Z}} ( \mathcal{X}, \mathcal{Z}; \Psi ) \partial \mathbf{z},

    which in most of the cases doesn’t have a closed-form solution and thus needs to be solved using iterative algorithms.

  • EM is one of such algorithm with some unique properties that other algorithms don’t have.

EM procedures

E-Step

Given parameters \hat{\Psi} estimated at the current iteration and incomplete data \mathcal{X}, compute the Q function, which is the expected value of the log likelihood of the complete data \mathcal{X}, \mathcal{Z} over the distribution of \mathbf{Z}

Q_{\hat{\Psi}} (\Psi) = \mathbb{E}_{\mathbf{Z} \mid \mathbf{X}; \hat{\Psi}} \left[ \log \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z} ; \Psi) \mid \mathcal{X} \right].

  • Since \mathcal{X} is given but we never be able to see \mathcal{Z}, the log-likelihood is a function of both \Psi and \mathbf{Z},

    L(\mathcal{Z}, \Psi) = \log \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) \mid \mathcal{X}.

  • The Q function only depend on \Psi but not \mathcal{Z} because taking the expected value of L(\mathcal{Z}, \Psi) over the distribution of \mathbf{Z} eliminates \mathcal{Z} in the expression.

  • The estimate of the parameter \hat{\Psi} in the current iteration is used in calculating the probability of \mathcal{Z} given \mathcal{X}, which is needed in the expectation calculation process.

  • Depending the problem setups, the expressions for both \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) and \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \hat{\Psi}) (used in \mathbb{E}_{\mathbf{Z} \mid \mathbf{X}; \hat{\Psi}} [\cdot]) should be already known or can be derived from the known probabilistic models between \mathbf{X} and \mathbf{Z}.

M-Step

Find the parameter \hat{\Psi} that maximizes the expected value derived in the E-step.

\hat{\Psi} = \arg\max_{\Psi} Q_{\hat{\Psi}} (\Psi)

Repeat the E-step and M-step until convergence.

Derivation of EM

The derivation of the EM algorithm mostly comes from the following observation: the log-likelihood of the incomplete data can be decomposed into 2 components

\log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) = G (\Psi, q) + D (\Psi, q)

where q is an arbitrary distribution of the latent variables.

  • The lower bound of EM

    G (\Psi, q) = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) }{ q (\mathcal{Z}) } \right]

  • The KL-divergence of between two distributions of \mathbf{Z}, i.e. q(\mathcal{Z}) and \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi)

    D (\Psi, q) = \mathrm{KL} \left[ q \mathrel{\Vert} \mathbb{P}_{\mathbf{X} \mid \mathbf{Z}} \right] = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ q (\mathcal{Z}) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right].

Proof

Since \log \mathbb{P}_\mathbf{X} (\mathbf{x}) is not dependent on \mathbf{Z}, taking its expectation over any distribution of \mathbf{Z} is equal to itself. Thus,

\begin{aligned} \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) & = \mathbb{E}_{\mathbf{Z}} \left[ \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) \right] \\ & = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right] \\ & = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ q (\mathcal{Z}) }{ q (\mathcal{Z}) } \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right] \\ & = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) }{ q (\mathcal{Z}) } \frac{ q (\mathcal{Z}) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right] \\ & = \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) }{ q (\mathcal{Z}) } \right] + \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ q (\mathcal{Z}) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right] \\ & = G (\Psi, q) + D (\Psi, q) \\ & = \mathbb{E}_{\mathbf{Z}} \left[ \log \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) \right] - \mathbb{E}_{\mathbf{Z}} \left[ \log q (\mathcal{Z}) \right] + \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ q (\mathcal{Z}) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \Psi) } \right] \\ & = Q (\Psi, q) + \mathrm{H} (q) + D (\Psi, q) \end{aligned}

Lower bound

Since KL-divergence D (\Psi, q) is proved to be non-negative, G(\Psi, q) can be seen as a lower bound of \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi)

\log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) \geq G(\Psi, q),

which can also be proven using Jensen’s inequality.

Proof

\begin{aligned} \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) & = \log \int \mathbb{P}_{\mathbf{X}, \mathbf{Z}} ( \mathcal{X}, \mathcal{Z}; \Psi ) \partial \mathbf{z} \\ & = \log \int q (\mathcal{Z}) \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} ( \mathcal{X}, \mathcal{Z}; \Psi ) }{ q (\mathcal{Z}) } \partial \mathbf{z} \\ & = \log \mathbb{E}_{\mathbf{Z}} \left[ \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} ( \mathcal{X}, \mathcal{Z}; \Psi ) }{ q (\mathcal{Z}) } \right] \\ & \geq \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ \mathbb{P}_{\mathbf{X}, \mathbf{Z}} ( \mathcal{X}, \mathcal{Z}; \Psi ) }{ q (\mathcal{Z}) } \right] \\ & \geq G (\Psi, q) \\ \end{aligned}

EM as coordinate ascent on lower bound

The EM is essentially doing the coordinate ascent on G (\Psi, q), which is believed to be easier to optimize than directly optimizing \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi), while guaranteeing the \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) is non-decreasing as G (\Psi, q) is optimized.

Coordinate ascent is an optimization method that optimize a single variable or one dimension of the variable at a time, while fixing the values of the rest of the variables from the last iteration unchanged. In the case of applying to G (\Psi, q) function, \Psi and q are separately maximized in different steps of each iteration.

  • E-step: given the parameter \hat{\Psi} estimated in the last iteration, the choice of the q function is optimized to maximize the value of G (\Psi, q).

  • M-step: given the \hat{q} function selected in E-step, \Psi is optimized to maximize the value of G (\Psi, \hat{q}) and will be used in the E-step of the next iteration.

E-step

Since the value of \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) doesn’t depend on the choice of q, the choice of q only affect the balance between G (\Psi, q) and D (\Psi, q) when the \Psi is fixed.

Thus, given the parameters \hat{\Psi} estimated in the last iteration, G (\hat{\Psi}, q) is maximized with respect to q when D (\hat{\Psi}, q) is minimized. Since the minimized value of D (\Psi, q) is 0, we have

\begin{aligned} D (\hat{\Psi}, q) & = 0 \\ \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{ q (\mathcal{Z}) }{ \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \hat{\Psi}) } \right] & = 0 \\ q (\mathcal{Z}) & = \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \hat{\Psi}), \end{aligned}

which shows that G (\hat{\Psi}) is maximized when the distribution of latent variables is chosen to be the probability of the latent variables given the observed data and the current estimate of the parameters.

A nice property of optimizing q, even though it doesn’t affect the value of \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) at all, is that the value of KL-divergence D (\Psi, \hat{q}) will also be non-decreasing no matter what \Psi is selected in the M-step by maximizing G (\Psi, \hat{q}).

  • This can be seen from the fact that D (\Psi, \hat{q}) = 0 when \hat{p} is selected to maximize G (\hat{\Psi}, q), and thus any \Psi will guarantee that the value of D (\Psi, \hat{q}) is larger or equal to 0.

  • This property implicitly prove the convergence of the EM algorithm in that both G (\Psi, q) and D (\Psi, q) will be non-decreasing during each iteration, and therefore, the value of \log \mathbb{P}_{\mathbf{X}} (\mathcal{X}; \Psi) is non-decreasing in each iteration.

M-step

G (\Psi, q) can be further decomposed into two components

G (\Psi, q) = Q (\Psi, q) + \mathrm{H} (q).

  • The expected value of the complete data with respect to the distribution q

    Q (\Psi, q) = \mathbb{E}_{\mathbf{Z} \sim q} \left[ \log \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z}; \Psi) \right].

  • The entropy of the latent variables

    \mathrm{H} (q) = - \mathbb{E}_{\mathbf{Z}} \left[ \log q (\mathcal{Z}) \right].

Since \mathrm{H} (q) doesn’t depend on \Psi, it will stay as a constant in the process of maximizing G (\Psi, q) with respect to \Psi.

Given \hat{q} = \mathbb{P}_{\mathbf{Z} \mid \mathbf{X}} (\mathcal{Z} \mid \mathcal{X}; \hat{\Psi}), maximizing G (\Psi, \hat{q}) is the same as maximizing Q function we defined above:

\begin{aligned} \arg\max_{\Psi} G (\Psi, \hat{q}) & = \arg\max_{\Psi} Q_{\hat{\Psi}} (\Psi) \\ & = \arg\max_{\Psi} \mathbb{E}_{\mathbf{Z} \mid \mathbf{X}; \hat{\Psi}} \left[ \log \mathbb{P}_{\mathbf{X}, \mathbf{Z}} (\mathcal{X}, \mathcal{Z} ; \Psi) \right]. \end{aligned}

Example: mixture model

One application of EM algorithm is to obtain MLE of the parameters in a mixture models.

Mixture model

We say random variable \mathbf{X} follows a mixture model if its distribution is a weighted combination of multiple components, where each component has a simple parametric distributions. Thus mixture model can represent distributions that cannot be expressed using a single parametric distribution.

Each sample \mathbf{x} is associated with a latent random variable z that indicates which component (parametric distribution) that \mathbf{x} should be drawn. Thus the sample \mathbf{x} has the conditional probability in a parametric form with parameters \boldsymbol{\theta}

\mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x} \mid z ; \boldsymbol{\theta}),

if we know the latent variable z for the sample.

Assuming in total we have c latent variables for all samples and each latent variable has the probability \mathbb{P}_{Z} (z), the probability of the sample is

\mathbb{P}_{\mathbf{X}} (\mathbf{x}) = \sum_{z=1}^{c} \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x} \mid z) \mathbb{P}_{Z} (z).

The Gaussian mixture model is simply a mixture model in which all components are Gaussian distributions.

EM for mixture model

If we knew what z is for each \mathbf{x}, the estimate of parameters for each component can be easily derived by sampling a dataset \mathcal{X}_{z} from the conditional distribution and applying MLE.

However, in practice, we never know which component each sample belongs to, and thus we apply EM by treating \mathbf{X} as observed variables and Z as the hidden variable.

The goal of applying EM is to find the parameters \Psi in the mixture model including:

  • The parameters for the parametric distribution of each component \{ \boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{c} \}.

  • The probability of each component \{ \pi_{1}, \dots, \pi_{c} \}.

E-step: complete data likelihood

To derive the EM procedure, we first need to write out the log-likelihood of the complete data in terms of the known parametric distributions

\begin{aligned} L(\mathcal{Z}, \Psi) & = \log \mathbb{P}_{\mathbf{X}, Z} (\mathcal{X}, \mathcal{Z}; \Psi) \\ & = \log \mathbb{P}_{\mathbf{X} \mid Z} (\mathcal{X} \mid \mathcal{Z} ; \boldsymbol{\theta}) \mathbb{P}_{Z} (\mathcal{Z}) \\ & = \log \prod_{i=1}^{n} \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid z_{i} ; \boldsymbol{\theta}_{z_{i}}) \pi_{z_{i}} & [\text{i.i.d assumption}], \\ \end{aligned}

where x_{i} is a sample, z_{i} indicates the component that x_{i} belongs to, \boldsymbol{\theta}_{z_{i}} is the parameters of the distribution for the component z_{i}, and \pi_{z_{i}} = \mathbb{P}_{Z} (z_{i}) is the probability of the component z_{i}.

Since z is discrete and range from 1 to c, any function of z can be written as

f(z) = \prod_{i=1}^{c} f(i)^{\mathbb{1} (z = i)},

where z is extracted out from the function to the power of the function.

Thus, the complete data likelihood can be further simplified to

\begin{aligned} L(\mathcal{Z}, \Psi) & = \log \prod_{i=1}^{n} \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid z_{i} ; \boldsymbol{\theta}_{z_{i}}) \pi_{z_{i}} \\ & = \log \prod_{i=1}^{n} \prod_{j=1}^{c} \left[ \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j}) \pi_{j} \right]^{\mathbb{1}(z_{i} = j)} & [f(z_{i}) = \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid z_{i} ; \boldsymbol{\theta}_{z_{i}}) \pi_{z_{i}}] \\ & = \sum_{i=1}^{n} \sum_{j=1}^{c} \log \left[ \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j}) \pi_{j} \right]^{\mathbb{1}(z_{i} = j)} \\ & = \sum_{i=1}^{n} \sum_{j=1}^{c} \mathbb{1}(z_{i} = j) \log \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j}) \pi_{j}. \end{aligned}

E-step: Q function

Taking the expectation of complete data log-likelihood over Z gives us the Q function that doesn’t depend on Z

\begin{aligned} Q_{\hat{\Psi}} (\Psi) & = \mathbb{E}_{Z \mid \mathbf{X}; \hat{\Psi}} \left[ L(\mathcal{Z}, \Psi) \right] \\ & = \mathbb{E}_{Z \mid \mathbf{X}; \hat{\Psi}} \left[ \sum_{i=1}^{n} \sum_{j=1}^{c} \mathbb{1}(z_{i} = j) \log \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j} \right) \pi_{j} \right] \\ & = \sum_{i=1}^{n} \sum_{j=1}^{c} \mathbb{E}_{Z \mid \mathbf{X}; \hat{\Psi}} \left[ \mathbb{1}(z_{i} = j) \right] \log \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j} \right) \pi_{j} \\ & = \sum_{i=1}^{n} \sum_{j=1}^{c} h_{i, j} \log \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j} \right) \pi_{j}, \\ \end{aligned}

where h_{i, j} = \mathbb{E}_{Z \mid \mathbf{X}; \hat{\Psi}} \left[ \mathbb{1}(z_{i} = j) \right] is a constant value that can be computed given that we have parameter \hat{\Psi} estimated in the last iteration.

\begin{aligned} h_{i, j} & = \mathbb{E}_{Z \mid \mathbf{X}; \hat{\Psi}} \left[ \mathbb{1} (z_{i} = j) \right] \\ & = \sum_{k=1}^{c} \mathbb{P}_{Z \mid \mathbf{X}; \hat{\Psi}} \left( k \mid \mathbf{x}_{i} \right) \mathbb{1} (k = j) \\ & = \mathbb{P}_{Z \mid \mathbf{X}; \hat{\Psi}} \left( j \mid \mathbf{x}_{i} \right) & [\mathbb{1} (k = j) = 0 \text{ for } k \neq j] \\ & = \frac{ \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j; \hat{\boldsymbol{\theta}}_{j} \right) \hat{\pi}_{j} }{ \mathbb{P}_{\mathbf{X}} (\mathbf{x}_{i}) } & [\text{Bayes' Theorem}] \\ & = \frac{ \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j ; \hat{\boldsymbol{\theta}}_{j} \right) \hat{\pi}_{j} }{ \sum_{k=1}^{c} \mathbb{P}_{\mathbf{X}, Z} \left( \mathbf{x}_{i}, k \right) } & [\text{marginalization}] \\ & = \frac{ \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j; \hat{\boldsymbol{\theta}}_{j} \right) \hat{\pi}_{j} }{ \sum_{k=1}^{c} \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid k; \hat{\boldsymbol{\theta}}_{k} \right) \hat{\pi}_{k} } \end{aligned}

M-step: maximizes Q function

Computing \hat{\Psi}_{\text{new}} that maximizes Q function for the next iteration is an optimization problem

\hat{\Psi}_{\text{new}} = \arg\max_{\Psi} \sum_{i=1}^{n} \sum_{j=1}^{c} h_{i, j} \log \mathbb{P}_{\mathbf{X} \mid Z} \left( \mathbf{x}_{i} \mid j ; \boldsymbol{\theta}_{j} \right) \pi_{j},

which can usually be solved analytically depending on the mathematical form of the parametric distribution of the component \mathbb{P}_{\mathbf{X} \mid Z} (\mathbf{x} \mid z).

Again, \hat{\Psi}_{\text{new}} is the estimated parameters that include

  • parameters \{ \hat{\boldsymbol{\theta}}_{1}, \dots, \hat{\boldsymbol{\theta}}_{c} \} in the c components of the mixture model.

  • probability parameters \{ \hat{\pi}_{1}, \dots, \hat{\pi}_{c} \} of c components.

Reference

  • http://www.columbia.edu/~mh2078/MachineLearningORFE/EM_Algorithm.pdf
  • https://gregorygundersen.com/blog/2019/11/10/em/
  • https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1268&context=gc_cs_tr
  • https://mbernste.github.io/posts/em/
27  Bayesian Estimation
29  Concentration Inequalities II